Electrode nanostructures in Lithium-based batteries
2015-03-23
org.kosen.entty.User@31481d7a
이훈희(eguitar97)
행사&학회소개
1. Introduction
2. Working principle and structure of lithum-based batteries
2.1. Li-ion battery
2.2. Li-air battery
2.3. Li-S battery
3. Scientific challenges associated with lithium-based batteries
3.1. Challenges associated with Li-ion batteries
3.2. Challenges associated with Li-air batteries
3.3. Challenges associated with Li-S batteries
4. Advantages and challenges associated with electrode nanostructures
4.1. Advantages of nanostructures
4.2. Challenges associated with nanostructures
5. Advanced electrode nanostructures for lithium-based batteries
5.1. Architecture anode nanostructures for Li-ion batteries
5.2. Cathode nanostructures for Li-ion batteries
5.3. Breathing cathode catalyst for Li-air batteries
5.4. Sulfur electrode for Li-S batteries
5.5. Concerns with lithium metal anodes
6. Conclusions and perspectives
2. Working principle and structure of lithum-based batteries
2.1. Li-ion battery
2.2. Li-air battery
2.3. Li-S battery
3. Scientific challenges associated with lithium-based batteries
3.1. Challenges associated with Li-ion batteries
3.2. Challenges associated with Li-air batteries
3.3. Challenges associated with Li-S batteries
4. Advantages and challenges associated with electrode nanostructures
4.1. Advantages of nanostructures
4.2. Challenges associated with nanostructures
5. Advanced electrode nanostructures for lithium-based batteries
5.1. Architecture anode nanostructures for Li-ion batteries
5.2. Cathode nanostructures for Li-ion batteries
5.3. Breathing cathode catalyst for Li-air batteries
5.4. Sulfur electrode for Li-S batteries
5.5. Concerns with lithium metal anodes
6. Conclusions and perspectives
보고서작성신청
전기 에너지 저장 장치로 이용되는 배터리의 출력 밀도 및 에너지 저장밀도 향상을 위한 연구가 지속되고 있다. 전기자동차가 판매되고는 있지만 충전시간과 1충전 주행거리 문제로 대중화까지는 아직 갈 길이 멀다. 이 논문은 높은 에너지 밀도를 갖는 리튬 기반 배터리의 작동 원리를 기반으로 높은 성능과 이용시간 증대를 위한 과제를 다루고 있다. 각 배터리 유형에 따른 전극 구조 측면에서 바라볼 수 있는 관점을 제공해 준다.