동향

지능형 Self-Organizing Network를 위한 설명 가능한 기계학습 연구 동향

분야

전기/전자

발행기관

한국전자통신연구원

발행일

2023-12-01

URL


As artificial intelligence has become commonplace in various fields, the transparency of AI in its development and implementation has become an important issue. In safety-critical areas, the eXplainable and/or understandable of artificial intelligence is being actively studied. On the other hand, machine learning have been applied to the intelligence of self-organizing network (SON), but transparency in this application has been neglected, despite the critical decision-makings in the operation of mobile communication systems. We describes concepts of eXplainable machine learning (ML), along with research trends, major issues, and research directions. After summarizing the ML research on SON, research directions are analyzed for explainable ML required in intelligent SON of beyond 5G and 6G communication.

Ⅰ. 서론
Ⅱ. 설명 가능한 기계학습 연구 동향
Ⅲ. SON에서의 기계학습 연구 동향
Ⅳ. 지능형 SON에서 XML 연구 방향
Ⅴ. 결론
약어 정리

리포트 평점  
해당 콘텐츠에 대한 회원님의 소중한 평가를 부탁드립니다.
0.0 (0개의 평가)
평가하기
등록된 댓글이 없습니다.