지식나눔

유기트랜지스터에서의 face on, edge-on

유기 트랜지스터에서 유기 반도체 물질이 채널을 형성하는데 있어 edge-on으로 배열이 되어야 pi-pi interactions 이 잘되어 성능이 좋은 것으로 알고 있습니다. 그리고 face-on 인지 edge-on인지 분석하는데 XRD를 이용하며 분석 방법에 out of plane 과 in plane 두가지로 분석하는것으로 알고 있습니다. 이 때 두가지 경우에 있어서 각각에 피크가 (100) (200) (300) / (010) 섞여서 나오며 책들을 봐도 좌표를 한가지로 고정된게 아니라 어떤건 substrate 수직방향이 z 어떤건 y 암튼 뒤죽박죽이여서 헷갈리고 있습니다. 어떤 기준으로 xyz좌표를 정하는지와 예로 edge on 일때는 out of plane의 어떤 피크가 잘나오는건지 같은 설명 부탁드립니다.
감사합니다.
  • face on
  • edge-on
지식의 출발은 질문, 모든 지식의 완성은 답변! 
각 분야 한인연구자와 현업 전문가분들의 답변을 기다립니다.
답변 1
  • 답변

    이상준님의 답변

    밀러 지수(Miller index)란 Bravais 격자의 결정구조의 결정면을 나타내는 지수입니다.
    XRD는 Bravais equation을 통하여 격자간의 거리를 측정하는것이기 때문에
    이것을 통해 아실수있을 것입니다.
    아래는 위키피디아https://en.wikipedia.org/wiki/Miller_index에서 퍼온 자료입니다.

    Miller indices form a notation system in crystallography for planes in crystal (Bravais) lattices.

    In particular, a family of lattice planes is determined by three integers hk, and , the Miller indices. They are written (hkℓ), and denote the family of planes orthogonal to {\displaystyle h\mathbf {b_{1}} +k\mathbf {b_{2}} +\ell \mathbf {b_{3}} }

    , where {\displaystyle \mathbf {b_{i}} } are the basis of the reciprocal latticevectors. (Note that the plane is not always orthogonal to the linear combination of direct lattice vectors {\displaystyle h\mathbf {a_{1}} +k\mathbf {a_{2}} +\ell \mathbf {a_{3}} } because the reciprocal lattice vectors need not be mutually orthogonal.) By convention, negative integers are written with a bar, as in 3 for −3. The integers are usually written in lowest terms, i.e. their greatest common divisor should be 1.

    There are also several related notations:[1]

    • the notation {hkℓ} denotes the set of all planes that are equivalent to (hkℓ) by the symmetry of the lattice.

    In the context of crystal directions (not planes), the corresponding notations are:

    • [hkℓ], with square instead of round brackets, denotes a direction in the basis of the direct lattice vectors instead of the reciprocal lattice; and
    • similarly, the notation ⟨hkℓ⟩ denotes the set of all directions that are equivalent to [hkℓ] by symmetry.

    Miller indices were introduced in 1839 by the British mineralogist William Hallowes Miller. The method was also historically known as the Millerian system, and the indices as Millerian,[2] although this is now rare.

    The Miller indices are defined with respect to any choice of unit cell and not only with respect to primitive basis vectors, as is sometimes stated.

    밀러 지수(Miller index)란 Bravais 격자의 결정구조의 결정면을 나타내는 지수입니다.
    XRD는 Bravais equation을 통하여 격자간의 거리를 측정하는것이기 때문에
    이것을 통해 아실수있을 것입니다.
    아래는 위키피디아https://en.wikipedia.org/wiki/Miller_index에서 퍼온 자료입니다.

    Miller indices form a notation system in crystallography for planes in crystal (Bravais) lattices.

    In particular, a family of lattice planes is determined by three integers hk, and , the Miller indices. They are written (hkℓ), and denote the family of planes orthogonal to {\displaystyle h\mathbf {b_{1}} +k\mathbf {b_{2}} +\ell \mathbf {b_{3}} }

    , where {\displaystyle \mathbf {b_{i}} } are the basis of the reciprocal latticevectors. (Note that the plane is not always orthogonal to the linear combination of direct lattice vectors {\displaystyle h\mathbf {a_{1}} +k\mathbf {a_{2}} +\ell \mathbf {a_{3}} } because the reciprocal lattice vectors need not be mutually orthogonal.) By convention, negative integers are written with a bar, as in 3 for −3. The integers are usually written in lowest terms, i.e. their greatest common divisor should be 1.

    There are also several related notations:[1]

    • the notation {hkℓ} denotes the set of all planes that are equivalent to (hkℓ) by the symmetry of the lattice.

    In the context of crystal directions (not planes), the corresponding notations are:

    • [hkℓ], with square instead of round brackets, denotes a direction in the basis of the direct lattice vectors instead of the reciprocal lattice; and
    • similarly, the notation ⟨hkℓ⟩ denotes the set of all directions that are equivalent to [hkℓ] by symmetry.

    Miller indices were introduced in 1839 by the British mineralogist William Hallowes Miller. The method was also historically known as the Millerian system, and the indices as Millerian,[2] although this is now rare.

    The Miller indices are defined with respect to any choice of unit cell and not only with respect to primitive basis vectors, as is sometimes stated.

    등록된 댓글이 없습니다.