지식나눔

우주의 반경, 질량, 온도와 시간을 수학적으로 계산해 보았습니다

Universal Mass (mi)=mn^(6+i)=(me', Mo')(n^

(-1), n^0, n^1, n^2, n^3), for i=(-6, -5, -4, -3, -2, -1, 0, +1, +2, +3) and n=(Mo'/me')^0.2


Tidal g'=c/(1 sidereal lunar year)=2.99792458

/(0.12*0.295*(2.3+5.6/60+0.40916/3600)*3.6)

=9.82858792516=G'(Mo')/Ro^2


Standard go=9.80665=G'(Mo)/Ro^2 for G'=6.

66507536902*10^(-11) with (Mo)=5.972168*

10^24  and Ro=6.37100876667*10^6


Initial E=(m*)cc=h'c/z=KE+PE=2E-E=2(n')(k1

)e'^2/z'+G'(m*)(-m*)/z' for inner structure (n'

)=h'c/((z/z')(k1)e'^2)=861/(z/z')=861/(861/13


7)=137 and Initial (m*)=(h'c/((z/z')G'))^0.5=(c

e')(137(k2)/G')^0.5=(2.99792458*1.60217648

7)((137/6.66507536902)^0.5)10^(8-19+((-7+1


1)/2))=2.1776536523*10^(-8), and inertial  v=

c(1-(z'/z)^2)^0.5=c(1-(137/861)^2)^0.5 for H=

v/R; R=Ro+R'+R"=n(ㅅo)+(ㅅo/2)n'^2+(ㅅo/2


)n'^3 for R'=(vo)t'=c(c/g') and R"=(1/2)(at)t'=

(1/2)(v^2/R"-G'(M")/R"^2)((861/137)R"/v)(c/

g')=R'n'=ccn'/g' for n'=c(2n/(g'Ro))^0.5 of n=


(Mo'/me')^0.2=(5.98552801332/9.109382878

11)10^((24+31)/5)=9.1943853619*10^10, and n'=1.62460350914*10^10


Detection horizon R (on Ro of (vo')=0)

=(Objectional accelerating R")*(1-(v'/c)^2)^0

.5 for v'=(0+v)/2=v/2=(c/2)(1-(137/861)^2)^0


.5, and (1-(v'/c)^2)=(1-(1/2^2)(1-(137/861)^2);

R=R"((3/2^2)+(137/861)^2)^0.5=13.7029264

698(bly) for R"=15.7564285544(bly), and 


H=2.29086183341*10^(-18) (/s=Herz)=70.688

6099822(km/s)/Mpc, (M")=(+)2*10^53+(-)1*1

0^63; For i=+3, (mi)=(+-)5*10^57


It is simultaneously equivalent  universe between real  and dark mass and proving

Supersymmetricity of Space s(-+1/2) at t=


(nTi of i=-6, Ti/2) and at (T, T*)=(m, m*)cc/(

k(ln3)); Space is Hubble's fermion


  • Space
  • G(2)-lesing Surface
지식의 출발은 질문, 모든 지식의 완성은 답변! 
각 분야 한인연구자와 현업 전문가분들의 답변을 기다립니다.
답변 0