네트워크

화학

Complex Molecular-Systems Multiscale Desigh Lab

Objectives:

To achieve the improved sustainability through the development of renewable and clean energy source, it is required to understand the operational mechanism of the complex materials and systems of renewable energy systems to improve their own properties. However, such materials or systems often consist complicated Multiscale/Multiphysics naturescharacterized by energy inter-conversion processes, sequential electron transportation, subtle balance of thermodynamic driving forces, ill-defined structural characteristics, etc.

 

For the comprehensive understanding on photocatalytic/photovoltaic systems, we need to understand (1) how the material interacts with the light, (2) how the electrons are excited and transferred, (3) how the transferred electrons are converted into chemical/electrical energies (surface catalysts), and (4) how all these functional moieties are integrated and intercoupled.

Therefore, our group aims to explore Multiscale/Multiphysics natures of complex material processes to unveil the underlying mechanisms, predict, and design the material structures for the renewable energy systems.

Toward this goal, we develop and integrate current cutting-edge simulation methods such as density functional theory, molecular dynamics simulations, various reactive and non-reactive force fields, finite difference methods, etc.

 

1. Light-matter interaction

     ● Multiscale simulation on the operational principles of dye sensitized solar cells (DSSC)

 

Related publications: J. Am. Chem. Soc., 2013, 135 (7), pp 2431–2434
                            J. Phys. Chem. Lett., 2012, 3, pp 556–559

     ● Development for Multiscale simulation methods for plasmonic materials

 

2. Excited electron dynamics

     ● Real-time and real-space simulation of graphene excited electrons (GraFDTD)

                                                                        Related publications: Appl. Phys. Lett., 2010, 97 (4), pp 043504

     ● High on/off ratio graphene field effect transistor designed by using GraFDTD simulations

                                                                Related publications: Proc. Nat. Acad. Sci. USA, 2013, 110, pp 8786

3. Next-generation Catalysts

     ● Electrochemical catalysts and solvation effects

 

Solvent design for Li-air batteries to manipulate the electrochemical reaction pathways 
Related publications: J. Am. Chem. Soc., 2013, 135 (26), pp 9733–9742

     ● Oxygen reduction reaction (ORR) catalysts for fuel cell applications

     ● Spillover catalysts

4. Atomistic structure predictions of soft materials



     ● Crystal structure predictions on Li4C6O6 organic cathode for lithium-ion batteries

                                                                        Related publications: Energy Environ. Sci., 2011, 4, pp 4938-4941


     ● New amorphous structure predictions of high pressure/high temperature lithium phase

                                                                Related publications: Proc. Nat. Acad. Sci. USA, 2011, 108 (37), pp 15101-15105

     ● Development of dispersion corrected DFT methods for modeling organic crystals: DFT-ulg methods

                                                                            Related publications: J. Phys. Chem. Lett., 2012, 3, pp 360–363

    ● Development of structural ensemble prediction method for solvated polymer : scaled effective solvent (SES)

국가

대한민국

소속기관

한국과학기술원 (학교)

연락처

책임자

김형준 linus16@kaist.ac.kr

소속회원 0