네트워크

화학

Organic Molecular Materials Laboratory

Current Interests

 
 
<style id="comp-jofcov1z-mesh-styles" type="text/css">#comp-jofcov1zinlineContent { height: auto; width: 100%; position: relative; } #comp-jofcov1zinlineContent-gridWrapper { display: -ms-flexbox; pointer-events: none; } #comp-jofcov1zinlineContent-gridContainer { position: static; display: -ms-grid; height: auto; width: 100%; min-height: auto; -ms-grid-rows: min-content 1fr; -ms-grid-columns: 100%; } #comp-jofcov22 { position: relative; margin: 31px 0px -37px calc((100% - 980px) * 0.5); left: 40px; -ms-grid-column: 1; -ms-grid-column-span: 1; -ms-grid-row: 1; -ms-grid-row-span: 1; -ms-grid-column-align: start; -ms-grid-row-align: start; } #comp-jofcov29 { position: relative; margin: 0px 0px 12px calc((100% - 980px) * 0.5); left: 41px; -ms-grid-column: 1; -ms-grid-column-span: 1; -ms-grid-row: 2; -ms-grid-row-span: 1; -ms-grid-column-align: start; -ms-grid-row-align: start; } #comp-jofcov1zcenteredContent { position: relative; } #comp-jofcov1zinlineContent-gridContainer > * { pointer-events: auto; } #comp-jofcov1zinlineContent-gridContainer > [id$="-rotated-wrapper"] { pointer-events: none; } #comp-jofcov1zinlineContent-gridContainer > [id$="-rotated-wrapper"] > * { pointer-events: auto; } </style>

Defect Engineering of Heterogeneous Molecular Monolayers

Molecular monolayers have been widely used for applications in many research areas. We are currently interested in the supramolecular chemistry inside monolayers. We aim to relate the supramolecular structure of monolayers to chemical, physical and electronic functions of them to elucidate structure-property relationship on a molecular scale.  To achieve this goal, we dilute a monolayer with other diluent molecules, which permits access to systematic control of monolayer's structure.

 
 
<style id="comp-jofd4wrh-mesh-styles" type="text/css">#comp-jofd4wrhinlineContent { height: auto; width: 100%; position: relative; } #comp-jofd4wrhinlineContent-gridWrapper { display: -ms-flexbox; pointer-events: none; } #comp-jofd4wrhinlineContent-gridContainer { position: static; display: -ms-grid; height: auto; width: 100%; min-height: auto; -ms-grid-rows: 1fr; -ms-grid-columns: 100%; } #comp-jofd4wrk { position: relative; margin: 17px 0px 62px calc((100% - 980px) * 0.5); left: 41px; -ms-grid-column: 1; -ms-grid-column-span: 1; -ms-grid-row: 1; -ms-grid-row-span: 1; -ms-grid-column-align: start; -ms-grid-row-align: start; } #comp-jofd4wrm { position: relative; margin: 84px 0px 12px calc((100% - 980px) * 0.5); left: 40px; -ms-grid-column: 1; -ms-grid-column-span: 1; -ms-grid-row: 1; -ms-grid-row-span: 1; -ms-grid-column-align: start; -ms-grid-row-align: start; } #comp-jofd4wrhcenteredContent { position: relative; } #comp-jofd4wrhinlineContent-gridContainer > * { pointer-events: auto; } #comp-jofd4wrhinlineContent-gridContainer > [id$="-rotated-wrapper"] { pointer-events: none; } #comp-jofd4wrhinlineContent-gridContainer > [id$="-rotated-wrapper"] > * { pointer-events: auto; } </style>

Molecular Thermoelectrics based on Large-area Junction Architecture

Organic-based thermoelectric materials hold promise of eco-friendly energy harvest in situations, where temperature differential exists, with low-cost, bendable characteristics. We are interested in developing new platforms to measure reliably and reproducibly thermopower of single molecules and a collection of molecules, and ultimately understanding thermoelectric mechanisms on a molecular scale. 

 
 
<style id="comp-jofd4y6o-mesh-styles" type="text/css">#comp-jofd4y6oinlineContent { height: auto; width: 100%; position: relative; } #comp-jofd4y6oinlineContent-gridWrapper { display: -ms-flexbox; pointer-events: none; } #comp-jofd4y6oinlineContent-gridContainer { position: static; display: -ms-grid; height: auto; width: 100%; min-height: auto; -ms-grid-rows: 1fr; -ms-grid-columns: 100%; } #comp-jofd4y6q { position: relative; margin: 13px 0px 60px calc((100% - 980px) * 0.5); left: 41px; -ms-grid-column: 1; -ms-grid-column-span: 1; -ms-grid-row: 1; -ms-grid-row-span: 1; -ms-grid-column-align: start; -ms-grid-row-align: start; } #comp-jofd4y6s { position: relative; margin: 79px 0px 11px calc((100% - 980px) * 0.5); left: 46px; -ms-grid-column: 1; -ms-grid-column-span: 1; -ms-grid-row: 1; -ms-grid-row-span: 1; -ms-grid-column-align: start; -ms-grid-row-align: start; } #comp-jofd4y6ocenteredContent { position: relative; } #comp-jofd4y6oinlineContent-gridContainer > * { pointer-events: auto; } #comp-jofd4y6oinlineContent-gridContainer > [id$="-rotated-wrapper"] { pointer-events: none; } #comp-jofd4y6oinlineContent-gridContainer > [id$="-rotated-wrapper"] > * { pointer-events: auto; } </style>

Understanding Electronic Structural Change of Molecules under External Electric Field

Performance of organic electronic devices usually relies on the behavior of energy levels of molecules within them under external electric field. Hence, understanding the response of electronic structure of molecules to applied voltage is important in the field of organic electronics and opotoelectronics. To this end, we harness molecular diodes incorporated into large-area tunnel junctions and take advantage of finely tunable (supra)molecular structure of self-assembled monolayers.

 
 
<style id="comp-jofdav1i-mesh-styles" type="text/css">#comp-jofdav1iinlineContent { height: auto; width: 100%; position: relative; } #comp-jofdav1iinlineContent-gridWrapper { display: -ms-flexbox; pointer-events: none; } #comp-jofdav1iinlineContent-gridContainer { position: static; display: -ms-grid; height: auto; width: 100%; min-height: auto; -ms-grid-rows: 1fr; -ms-grid-columns: 100%; } #comp-jofdav1k { position: relative; margin: 30px 0px 10px calc((100% - 980px) * 0.5); left: 40px; -ms-grid-column: 1; -ms-grid-column-span: 1; -ms-grid-row: 1; -ms-grid-row-span: 1; -ms-grid-column-align: start; -ms-grid-row-align: start; } #comp-jofdav1m { position: relative; margin: 62px 0px 8px calc((100% - 980px) * 0.5); left: 40px; -ms-grid-column: 1; -ms-grid-column-span: 1; -ms-grid-row: 1; -ms-grid-row-span: 1; -ms-grid-column-align: start; -ms-grid-row-align: start; } #comp-jofdav1icenteredContent { position: relative; } #comp-jofdav1iinlineContent-gridContainer > * { pointer-events: auto; } #comp-jofdav1iinlineContent-gridContainer > [id$="-rotated-wrapper"] { pointer-events: none; } #comp-jofdav1iinlineContent-gridContainer > [id$="-rotated-wrapper"] > * { pointer-events: auto; } </style>

Stimuli-responsive Polymeric Materials

We are interested in functional polymeric materials, which are responsive to different types of chemical and mechanical external stimuli. In particular, we focus on N-heterocyclic three-membered ring, aziridine. Aziridine is structurally similar to epoxide, which is one of the most widely utilized in polymer industry and materials science, however, its chemistry in terms of structural stability and ring opening reaction is very different from that of epoxide. By incorporating aziridines into polymeric substrates, we are currently investigating novel stimuli-responsive polymeric materials, and their applications in surface lithography, engineering of surface properties, energy harvest, and adhesive.


국가

대한민국

소속기관

고려대학교 (학교)

연락처

책임자

윤효재 hyoon@korea.ac.kr

소속회원 0