동향

[전자통신동향분석]심층 신경망 기반 대화처리 기술 동향

분야

정보/통신

발행기관

한국전자통신연구원

발행일

2019.08.01

URL


초록
In this study, we introduce trends in neural-network-based deep learning research applied to dialogue systems. Recently, end-to-end trainable goal-oriented dialogue systems using long short-term memory, sequence-tosequence models, among others, have been studied to overcome the difficulties of domain adaptation and error recognition and recovery in traditional pipeline goal-oriented dialogue systems. In addition, some research has been conducted on applying reinforcement learning to end-to-end trainable goal-oriented dialogue systems to learn dialogue strategies that do not appear in training corpora. Recent neural network models for end-to-end trainable chit-chat systems have been improved using dialogue context as well as personal and topic information to produce a more natural human conversation. Unlike previous studies that have applied different approaches to goal-oriented dialogue systems and chit-chat systems respectively, recent studies have attempted to apply end-to-end trainable approaches based on deep neural networks in common to them. Acquiring dialogue corpora for training is now necessary. Therefore, future research will focus on easily and cheaply acquiring dialogue corpora and training with small annotated dialogue corpora and/or large raw dialogues.

리포트 평점  
해당 콘텐츠에 대한 회원님의 소중한 평가를 부탁드립니다.
0.0 (0개의 평가)
평가하기
등록된 댓글이 없습니다.