- 초록
- Although deep learning-based visual image recognition technology has evolved rapidly, most of the commonly used methods focus solely on recognition accuracy. However, the demand for low latency and low power consuming image recognition with an acceptable accuracy is rising for practical applications in edge devices. For example, most Internet of Things (IoT) devices have a low computing power requiring more pragmatic use of these technologies; in addition, drones or smartphones have limited battery capacity again requiring practical applications that take this into consideration. Furthermore, some people do not prefer that central servers process their private images, as is required by high performance serverbased recognition technologies. To address these demands, the object and scene recognition technologies for mobile/embedded devices that enable optimized neural networks to operate in mobile and embedded environments are gaining attention. In this report, we briefly summarize the recent trends and issues of object and scene recognition technologies for mobile and embedded devices.
- 저자
- 이수웅콘텐츠인식연구실suwoong@etri.re.kr
이근동콘텐츠인식연구실zacurr@etri.re.kr
고종국콘텐츠인식연구실jgko@etri.re.kr
이승재콘텐츠인식연구실seungjlee@etri.re.kr
유원영콘텐츠인식연구실zero2@etri.re.kr
추천 리포트
-
[동향보고서] 서버 및 엣지향 NPU 기술개발 동향
-
[동향보고서] 엣지 기반 재난ㆍ재해 영상분석 기술
-
[동향보고서] 대규모 디바이스의 자율제어를 위한 EdgeCPS 기술 동향
-
[동향보고서] NPU 반도체를 위한 저정밀도 데이터 타입 개발 동향
-
[동향보고서] 글로벌 자가면역질환치료제 최신 동향
-
[코센리포트] Neural Network Pruning
-
[코센리포트] 블록체인과 에지컴퓨팅의 통합시스템 동향
-
[동향보고서] ITFIND 주간기술동향 1970호
-
[동향보고서] 경량 딥러닝 기술 동향
-
[동향보고서] 지능형 에지 컴퓨팅 및 네트워킹 기술
-
리포트 평점
해당 콘텐츠에 대한 회원님의 소중한 평가를 부탁드립니다. -
0.0 (0개의 평가)