딥페이크의 확산
최근 유튜브를 통해 배포되는 영상 중에서 딥페이크(DeepFake)를 활용한 영상들이 자주 보인다. 이들은 단순히 재미와 유머를 목적으로 하는 예도 있지만, 정치·사회 영역에서 가짜 뉴스를 퍼트려 혼란을 유발하거나, 특정 인물을 콘텐츠로 활용하여 음해하는 등 심각한 부작용을 초래한다. 이미 악의적으로 인스타그램의 여성 사진을 누드로 편집(Deep porn)하는 AI가 등장1)한 지 오래이며, 유명 인사(트럼프, 오바마, BTS 등)를 다른 사람으로 편집하는 인권침해 사례도 다수 발생하고 있다. 최근에는 러시아와 전쟁을 겪고 있는 우크라이나의 젤린스키 대통령이 등장하는 가짜 영상이 공개되어 화제가 된 바 있다.2) 이처럼 딥페이크, 페이크 페이스(Fakeface)와 같이 인공지능(AI)을 활용하여, 진짜 같은 가짜를 만드는 이미지 합성 기술은 악의적인 기만행위로 사회 및 국가적인 혼란을 야기하고 있다.
딥페이크를 만드는 알고리즘
그러면 딥페이크는 어떻게 만들어질까? 딥페이크에 활용되는 AI는 생성적 적대 신경망(GAN, Generative Adversarial Network)이라는 모델이다. 이는 두 개의 신경망이 서로 경쟁하면서 더 나은 결과를 만들어내는 강화학습 방식의 AI 기술이다. 글자 그대로, 그럴듯한 가짜 이미지를 생성(Generative)하고, 생성 및 감별 기능의 두 개 모델을 서로 적대적 (Adversarial)으로 경쟁·학습시킨 인공신경망(Network)을 뜻한다.
GAN을 설명하는 쉬운 예시로, 위조지폐범과 경찰의 비유를 종종 활용한다. 위조지폐범은 더욱 정교하게 가짜 돈을 만들고자 노력(학습)하며, 경찰은 이런 정교한 가짜 돈을 더 정확하게 감별해 내고자 노력(학습)하는 형식이다.
원래 GAN은 실제와 가상의 이미지를 보다 정밀하게 구별하고 구현하기 위한 기술로 개발 되었다. GAN을 통하여 영상이나 이미지를 정교하게 편집하거나, 보다 실감 나는 콘텐츠를 제작하고, 손상된 영상을 복원하는 등 다양한 영역에 활용되었다. 그러나 이 기술로 분별할 수 없는 수준의 콘텐츠를 제작하여 정치·사회적으로 테러 및 가짜 뉴스 등에 악용하는 사례가 점차 증가하고 있는 것이 현실이다.
최근에는 GAN을 활용하여 AI가 사람의 피부뿐 아니라 머리카락까지 실제와 비슷한 이미지를 생성하는 수준에 이르러, 기술적 한계(Uncanny Valley)를 이미 뛰어넘은 것으로 판단되고 있다. 미국 UC버클리대와 영국 랭커스터대 공동연구팀은 실제 얼굴과 AI가 합성한 얼굴을 구별하는 실험을 통하여, 사람들이 AI가 합성한 가짜를 구별하지 못하며 오히려 가짜를 더 신뢰한다는 결과를 도출하였다.3) 이 실험에서는 223명의 실험 참가자를 대상으로, 실제 사람 얼굴 사진과 AI가 합성한 얼굴 사진이 섞인 800장의 세트에서 무작위로 128장을 뽑아 신뢰도에 따라 1~7점 척도의 점수를 부여하게 했다. 그 결과, 합성 얼굴에 대한 평균 신뢰도(4.82)가 실제 얼굴 평균 신뢰도(4.48)보다 높게 나타났다. 또한 신뢰도 상위 4개의 얼굴 중 3개는 합성 얼굴이며, 신뢰도 하위 4개 얼굴은 모두 실제 얼굴이었다