동향

[전자통신동향분석] 심층강화학습 라이브러리 기술동향

분야

정보/통신

발행기관

한국전자통신연구원

발행일

2019.12.01

URL


초록
Reinforcement learning is a type of machine learning paradigm that forces agents to repeat the observation-action-reward process to assess and predict the values of possible future action sequences. This allows the agents to incrementally reinforce the desired behavior for a given observation. Thanks to the recent advancements of deep learning, reinforcement learning has evolved into deep reinforcement learning that introduces promising results in various control and optimization domains, such as games, robotics, autonomous vehicles, computing, industrial control, and so on. In addition to this trend, a number of programming libraries have been developed for importing deep reinforcement learning into a variety of applications. In this article, we briefly review and summarize 10 representative deep reinforcement learning libraries and compare them from a development project perspective.


 
저자
신승재지능네트워크연구실sjshin0505@etri.re.kr
조충래지능네트워크연구실clcho@etri.re.kr
전홍석지능네트워크연구실jeonhs@etri.re.kr
윤승현지능네트워크연구실shpyoon@etri.re.kr
김태연지능네트워크연구실tykim@etri.re.kr


 

리포트 평점  
해당 콘텐츠에 대한 회원님의 소중한 평가를 부탁드립니다.
0.0 (0개의 평가)
평가하기
등록된 댓글이 없습니다.